
Demystifying
Java Platform Security Architecture

Ramesh Nagappan, CISSP
nramesh@post.harvard.edu

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Overall Presentation Goal

Learn how to get started on using          
Java Platform and its core Security 
Mechanisms .
• J2SE, J2ME, Java Card, Applets, Java Web start

• Java Security Management tools

• Securing Java Code from Decompilation



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Presentation Outline

Java Platform Security Architecture
Java Applet Security
Java Web Start Security (JNLP Security)
Java Micro Edition (J2ME) Security Architecture
Java Card Security Architecture
Java Platform Security – Key and Certificate 
Management tools
Securing the Java code from Decompilation



Java Platform Security Architecture

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Basics about Java

• Java Platform and its Programming language is introduced 
by Sun Microsystems during late 1995.
– Invented by Dr.James Gosling at Sun Microsystems.

• Java offers a object-oriented programming and platform-
independent application development environment.
– Java delivers a architecture neutral, interpreted and executable bytecode.
– Java enables delivering portable cross-platform application solutions.
– Java applications can be accessed locally or dynamically loaded from a 

network.
– Java applications are capable of running on any device platform 

• From smartcards to micro-devices, workstations to enterprise servers, 
mainframes to supercomputers and so on.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Core Java Technologies

• Sun Categorized the Java technologies under three key 
major editions.
– Primarily to simplify software development and to support target deployment 

platform.
– Java Standard Edition (also referred to a J2SE or JDK)

• Commonly used as Java runtime environment (JRE)  for running basic Java 
applications 

– Java Enterprise Edition (also referred to as J2EE or Java EE)
• Set of standards and API technologies for developing multi-tier business 

applications.
– Java Micro Edition (also referred to as J2ME or Java ME)

• Set of standards and API technologies for Java enabled Micro-devices and 
embedded systems

• Java Card is a sub-set of J2ME for supporting smartcards.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Security at the High-level
• Security has been an integral part of Java technology from 

day one.
– It has been an evolving design goal of the Java community as Java is 

primarily targeted to network-centric applications.

• Java Security Architecture foundation provides a secure 
execution environment via:
– The Java Virtual Machine (JVM)

• The JVM defines a secure environment by enforcing stringent security measures  
for running Java applications 

– The Java Programming Language
• The Java language provides several inherent features that ensures security and 

integrity of the Java application and its underlying JVM.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Security in Java Virtual Machine 
• The Java Virtual Machine (JVM) is an abstract computing 

engine
– It resides on the host computer and serves as the execution environment 

for executing the compiled Java code.
– The JVM insulates the Java application from underlying differences of the 

operating systems, networks and system hardware.

• The JVM’s built-in security architecture protects the Java 
environment from most security breaches.
– The JVM security architecture acts as a primary security layer by 

protecting users and the environment from malicious acts.
– The JVM enforces security via configurable policies, access control 

mechanisms and security extensions.
– The JVM also allows users to securely download and execute untrusted 

Java programs from remote resources and over the network.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Security in Java Language
• The Java language is a general-purpose object-oriented 

programming language
– It delivers platform-neutral compiled code that can be executed by a JVM.

• The Java language is designed to provide security of the 
application and its underlying runtime environment.
– The Java language assures security of the application at all levels

• From the basic Java language constructs to the Java runtime
• From the supporting Java class libraries to the Java application

– The Java language also offers several inherent features that contributes to 
the security of the application.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Security features in Java Language
• The key security features of the Java language that 

contributes to the security are:
– Java defines all primitives with a specified size and all operations are 

defined to be executed in a specific order of execution.
– Java language provides access control functionality on variables and 

methods in the object via namespace management for type and procedure.
• Ex. public, private, protected, package etc.

– Java language does not allow defining or de-referencing pointers.
• Programmers cannot misuse or forge a pointer to the memory or create code 

defining offset points to memory.
– Java object encapsulation supports “programming by contract” that 

allows reuse of the code that has already been tested.
– Java is a strongly typed language – During compile time it does extensive 

type checking for type mismatches.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Security features in Java Language
• Continued:

– Java allows declaring classes or methods as final.
• Helps to protect the code from malicious attacks via creating sub-classes and 

substituting it for the original class and override methods.
– Java Garbage Collection mechanism contributes to security of Java 

programs
• By providing a transparent storage allocation and recovering unused memory 

without manual intervention.
• Ensures program integrity during execution and prevents programmatic access 

to accidental and incorrect freeing of memory resulting a JVM crash.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Platform Built-in Security
• Java provides a built-in security architectural foundation as 

part of the JVM.
– Based on configurable policies and domains
– Rule based class loading
– Signing code via support for cryptography services.
– Allows implementing security policies

• For protecting/controlling access to resources

• Since inception : Java 1.0.x
– Java introduced the notion of a Sandbox based security model
– Java 1.0.x sandbox security model helps running all Java applications 

locally within the resources available to the JVM.
• Protects downloaded Java applets cannot access or alter the user’s resources 

beyond the sandbox
– Java 1.1.x introduced ‘signed applets’, which allowed downloading and 

executing applets as trusted code after verifying applet signer’s information.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

JDK 1.1 Security Model



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java 2 Platform Security Model
• Java 2 Platform (J2SE)  introduced significant security 

enhancements to JDK 1.1.x.
– Full-fledged support for cryptographic services
– Tools for PKI management and digital certificates
– Policy-driven restricted access control to JVM resources
– Rule-based class loading and verification of bytecode
– Policy driven access to Java applets downloaded by a Web browser

• In J2SE Security architecture, all code can be subjected to 
a ‘Security Policy’ – regardless of running locally or 
downloaded remotely 
– All code can be configured to make use of a ‘Protection domain’ 

(equivalent to a sandbox) and a Security policy.
– The Security policy dictates whether the code can be run on a particular 

protection domain or not.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

J2SE Security Architecture Elements



www.coresecuritypatterns.comwww.coresecuritypatterns.com

J2SE Protection Domain
• J2SE introduced the notion of “Protection Domains” , that  

allows to enforce access control policies.
– Configuring a ‘Protection Domain’ allows grouping of classes and instances  

by associating them with a “Security policy” containing set of “Permissions”.
– Protection domains are determined by the current security policy defined for 

a Java runtime environment.
– The java.security.ProtectionDomain class encapsulates the 

characteristics of a Protection Domain.
– With out defining a Protection Domain - by default all “local” Java 

applications run unrestricted as trusted applications 

• Protection Domains are generally categorized as two 
domains. 
– System Domain: All protected resources such as file systems, networks
– Application Domain: The protected resources that are part of the single 

execution thread.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Permissions
• ‘Permissions’ determine whether access to a resource of 

the JVM is granted or denied.
– Permissions give specified resources or classes running in the instances 

of the JVM – the ability to permit or deny certain runtime operations.
• For example:  An applet or application using a Security Manager can obtain 

access to a system resource only if it has permissions.
– The Java Security API defines a hierarchy of Permission classes.
– The java.security.Permission is the abstract class that represents access 

to a target resource. 
– The Permission class contain several sub-classes to represent different 

type of permissions.

• Example ‘Permission’ Classes 
– For wildcard permissions: java.security.AllPermission
– For network permissions: java.net.SocketPermission
– For file system permissions: java.io.FilePermission



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Setting Permissions in a policy

• ‘Permissions’ can be defined using a security policy 
configuration file.
– If a caller application requires access to a file located in a file system. The 

caller application must have the permissions granted to access the file 
object.

– For example,  to grant access to read a file in “c:\temp” the file permission 
can be defined in security policy file.

grant {
permission java.io.FilePermission

“c:\\temp\\testFile”, “read” ;
}



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Policy
• In J2SE, Security policy defines the protection domains for 

Java applications.
– The JVM makes use of a policy driven access control mechanism by

dynamically mapping permissions defined in one of more “policy” files.
– Java applications are configured with policy files describing access 

privileges such as read and write or making a connection to a host.
– The user or administrator of the application usually configures the policy file.

• In J2SE, the system-wide security policy file ‘java.policy’ is located at 
<JRE-HOME>/lib/security/ directory.

• The policy file location for the system is defined in the security 
properties file with a java.security located at <JRE-HOME>/lib/security/ .

• The effective policy of the Java application environment will 
be the union of all permissions defined in all policy files.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Example Policy file

• Policy configuration file specifying the permission for signed 
JAR file loaded from http://www.coresecuritypatterns.com
and signed by “javaguy”
– The signer “javaguy” is granted with read/write access to all files in 

/export/home test.

grant  signedBy “javaguy” 
codebase “http://www.coresecuritypatterns.com/*”   {

permission java.io.FilePermission
“/export/home/test/*”, “read,write” ;

};



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Security Manager

• In J2SE, Security Manager acts as the primary security 
guard against malicious operations.
– Security Manager (java.security.SecurityManager) plays the role of 

enforcing the required security policy.
– The java.security.SecurityManager consists of several checkXXYYZZ()

methods to determine access privileges.
– If there is a security violation, the JVM will throw an 

AccessControlException or SecurityException.
– To enforce a Java application to use a SecurityManager and security policy 

– startup  the JVM with –Djava.security.SecurityManager and                        
–Djava.security.policy as JVM arguments.

• For example:   java –Djava.security.SecurityManager
-Djava.security.policy=/export/ramesh/My.Policy MyJavaClass



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Using SecurityManager Class

• In a Java application, the Security Manager is set by the 
setSecurityManager() or obtained via getSecurityManager()
methods in class System.
– For example, to use SecurityManager programmatically in a Java 

application code.
. .  .

java.security.SecurityManager mySecurityManager =
System.getSecurityManager();

if  (mySecurityManager != null)  {
mySecurityManager.checkWrite(fileName) ;
}

. . .



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java AccessController

• Access Controller allows performing dynamic inspections 
and deciding whether access to a resource is granted or 
denied.
– In Java code, AccessController (java.security.AccessController)  allows 

to encapsulate the location, codesource and permissions to perform an 
operation.

– It makes use of CheckPermission(Permission) method to determine 
access to the resource.

– If there is a security violation, the JVM will throw an 
AccessControlException.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Using AccessController Class

• For example, to use AccessController for checking read 
and write permissions of a directory.

. .  .
try {

AccessController.CheckPermission
(new FilePermission(“/var/temp/*”, “read,write”));

System.getSecurityManager();
}  catch (SecurityException secx) {

//Print…Does not access to directory
}

. . .



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Codebase

• Java allows to specify URL location of a class or JAR file 
using codebase.
– In Java Security Policy file, codebase identifies the URL location with 

permissions for granting or denying access. 
. .  .

grant   codebase “http://www.coresecuritypatterns.com/*”   {
permission java.io.FilePermission

“/export/home/test/*”, “read,write” ;
};



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java CodeSource

• CodeSource allows representation of a URL from which a 
class was loaded and the certificate keys used to sign the 
class.
– The CodeSource class and its two arguments for defining code location and 

certificate keys are specified as: 
. .  .

CodeSource myCS = (URL url, java.security.cert.Certificate certs[]);
. . .



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Bytecode Verifier

• The Java Bytecode verifier is an integral part of JVM.
– Allows to verify code prior to execution
– Ensures that the code was produced consistent with Java specifications by 

a trustworthy compiler.
– Also allows to detect inconsistencies related to array bound-checking and 

object casting through runtime enforcement.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java ClassLoader

• The Java ClassLoader is responsible for loading Java 
classes into the JVM. 
– From a security standpoint, Classloaders can be used to establish security 

policies before executing untrusted code or to verify digital signatures.
– To enforce security, Classloader coordinates with the SecurityManager and 

AccessController to determine security policies.
– In J2SE, all Java applications have the capability of loading bootstrap 

classes, system classes and application classes using an internal class 
loader (also referred to as primordial class loader).

• The Primordial classloader uses a special classloader
java.security. SecureClassLoader to protect JVM from malicious classes.

• The SecureClassLoader has a protected constructor that associates the loaded 
class to a protection domain.

• For example:  URLClassLoader is a sub-class of the SecureClassLoader.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Using URLClassLoader

• For example, to use URLClassLoader for loading classes  
from a directory.

. .  .
try {

//Convert file location to URL
URL url = file.toURL();

URL[] urls = new URL[]{url};
// Create a new class loader

ClassLoader myClassLoader = new URLClassLoader(urls);
Class  myClass = myClassLoader.loadClass(“com.csp.MySecClass);

}  catch (MalformedURLException secx) {
} catch (ClassNotFoundException) {

}
. . .



Java Applet Security

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Applet Security
• Java Applets are client-side applications downloaded from 

the Web.
– Runs in either a Java-enabled Web browser or a Java appletviewer.

• Downloaded Applets are considered “untrusted” and 
restricted from access to resources in client host. 
– Prevents applets - from reading or writing files, making network connections or 

native calls, starting other programs or loading libraries.

• Applets can be considered “Trusted” based on following 
factors 
– Applets installed on a local file system or executed on a localhost.
– Signed applets allows verification of originating source and signer’s 

information.
– Signed applets can be trusted to run with the permissions granted in a security 

policy file.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Signed Applets
• J2SE introduced the notion of signed applets

– Ensures that the applet origin and its integrity is guaranteed by a Certificate 
Authority (CA).

– Allows to trust them with permissions granted via a client security policy file.

• J2SE bundle provides tools for signing applets and 
applications. 
– ‘jarsigner’ tool allows attaching a digital signature to the applet.
– To sign the applet, it is required to obtain a certificate capable of code signing.
– The digital signature identifies the signer of the applet.

• Applet JAR file is signed using the private key of the applet 
creator.
– The signature is verified at the client using the public key of the applet creator.
– For production purposes, it is important to acquire public/private key 

certificates from a trusted CA.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Applet Signing Process
1. Compile the Applet source to an executable class
2. Package the compiled class into a JAR file

Ex.   jar cvf WriteFileApplet.jar WriteFileApplet.class

3. Generate Key Pairs using keytool (For testing) or Obtain 
Public and Private keys from a CA (For production 
purposes).

Ex.   keytool –genkey -keystore mystore -keypass mypwd –storepass mystorepwd

4. Sign the JAR file using the jarsigner utility and verify the 
signature on the JAR file.

Ex.  jarsigner –keystore mystore –storepass mystorepwd –keypass mypwd
-signedjar SignedWriteFileApplet.jar WriteFileApplet signapplet

5. Export the public key certificate – It is required to sent to the 
end user keystore requiring access to the applet.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Applet Signing Process
Continued …
5. Deploy the JAR and Certificate files

Ex.   <applet code=WriteFileApplet.class
archive=“SignedWriteFileApplet.jar”  codebase=“….”></applet>

6. Import the Public key and Trusted CA certificates into the 
client keystore (Using keytool utility).

7. Create the Policy file that grants the applet to have the 
required permissions.

8. Run and test the applet for all defined permissions.



Java Web Start Security

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Web Start
• Java Web Start (JWS) is a full-fledged Java client 

application, considered as a viable alternative to Java 
applet.
– JWS based client applications be deployed, launched and updated

from a Web server.
– The underlying technology of JWS is Java Network Launch Protocol

(JNLP).
– JWS provides a mechanism for application distribution through a Web 

server.
– Enables Java rich-client access to server application over a network.
– Once a JWS application is downloaded – it does not need to be 

downloaded next time – the updates to the application is automatically done 
in an incremental fashion.

– Since J2SE 1.4.x,  JWS has been an integral part of Java bundle.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Securing Java Web Start Applications
• JWS applications runs outside of the Web browser using 

the sandbox features of the Java runtime.
• JWS allows defining security attributes for client-side Java 

applications.
– To specify access to local resources, such as file systems, network 

connections etc.
– The security attributes are specified using XML file referred to as JNLP 

descriptor file.

• JNLP descriptor defines the application access privileges 
to the local and network resources. 
– JNLP also allows the use of digital signatures for signing JAR files.
– When downloading unsigned applications, JNLP displays a “Security 

Advisory” dialog box prompting the end user about any required action. 



www.coresecuritypatterns.comwww.coresecuritypatterns.com

JNLP Settings for JWS Security
• JNLP descriptor uses XML 

elements to describe JWS 
applications and its security.

• To enforce security, <security>
element is used to specify 
permissions.

• JNLP allows to define two 
permission options:
– <all-permissions> for applications 

requiring full-access to client 
resources.

– <j2ee-application-client-
permissions> for selected set of 
permissions – socket permissions, 
file access, clip-board access and 
so forth.

JWS Security Advisory Dialog



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Sample JNLP Descriptor
<?xml version="1.0" encoding="UTF-8"?> 
<jnlp spec="1.0+" codebase="file:///c:/rameshn/jnlp/" > 

<information>
<homepage href="/jdc" /> 

</information> 
<offline-allowed/>   
<security>

<j2ee-application-client-permissions/> 
</security> 

<resources> <j2se version="1.2+" /> 
<jar href="/MySignedJNLP.jar"/> 

</resources>
<application-desc main-class=“MyJNLP" /> 

</jnlp> 

*  It is also important to sign the JAR file using JARSIGNER tool before JNLP deployment.



J2ME Platform Security

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java 2 Micro-edition (J2ME)
• J2ME is designed to deliver the benefits of Java 

technology for micro-devices and embedded systems.
– Devices with limited constraints to Memory size, display size, 

processing power, network bandwidth and battery life.
– Slimmed down version of J2SE.
– Defines a notion of configurations and profiles to represent device 

characteristics as per industry specifications.

• J2ME defines configurations to satisfy the needs of 
broad range of devices.
– Connected Device Configuration (CDC) targets high-end consumer 

devices with high-bandwidth network and atleast 2Mb Memory. 
– Connected Limited Device Configuration (CLDC) targets low-end 

devices with only 128-512 kb of memory.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

J2ME Platform Architecture



www.coresecuritypatterns.comwww.coresecuritypatterns.com

J2ME Configuration and Profiles



www.coresecuritypatterns.comwww.coresecuritypatterns.com

CDC Security

• CDC offers all security features typical to J2SE Security.
– J2ME runtime built-on on CDC may utilize the standard JVM bundled with 

J2SE or Compact Virtual Machine (CVM).

• Similar to J2SE, CDC Security features include:
– All code runs in a sandbox without exposing the user’s device to risk.
– All classes loaded with full byte-code verification and Java language 

features.
– Signed classes are verified for integrity and originating source.
– Security policy provides fine-grained access control over the resources 

using set of permissions and policies.
– Support for Java cryptography to secure programs, data, communication 

and data retrieval.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

CLDC Security
• CLDC features a sub-set of JVM with limited API and 

supporting libraries.
– CLDC runs on top of Sun’s K Virtual Machine (KVM) designed specifically 

for supporting resource limited devices.

• CLDC features a limited security model including:
– New class verification mechanism.
– No user-defined class loaders
– No support for thread groups or daemon threads
– No support for weak references
– Limited error handling
– No finalization
– No reflection 
– New connection framework for networking



www.coresecuritypatterns.comwww.coresecuritypatterns.com

CLDC Security levels
• CLDC features two levels of security.

– Low-level KVM Security
– Application level Security

• Low-level KVM security
– Application running in the KVM cannot disrupt the device anyway
– Security is guaranteed by a “Pre-verification process” that rejects invalid 

classes.
– After “Pre-verification” the KVM does an in-device verification process.

• Application-level Security
– The KVM defines a sandbox that ensures all Java classes are verified and 

guaranteed to be valid.
– Limits a pre-defined set of APIs for the application as required by the CLDC 

specification and the supporting device profile.
– Application is restricted from using its own classloader.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

KVM Pre-verification Process



www.coresecuritypatterns.comwww.coresecuritypatterns.com

J2ME Profiles
• J2ME Profiles define a set of Java API technologies suited 

to meet a specific device class or targeted class of devices..
– Profiles are built on top of J2ME Configurations
– Mobile Information Device Profile (MIDP) is built on top of CLDC
– Foundation Profile (FP) is built on top of CDC

• MIDP
– Combines with CLDC to provide an execution environment and application 

functionality 
– Includes user interface, application management, network connectivity etc.
– MIDP applications are packaged similar to Java applet referred to as MIDlet

• MIDlet
– A J2ME application designed to run on a mobile device.
– A MIDlet suite consists of one or more MIDlets packaged as JAR file 

including a Java Application Descriptor (JAD) file.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

MIDlet Security
• MIDlet suites are restricted to operate within a sandbox 

based security model.
– Helps to avoid any risks to the device resources.
– MIDP 2.0 introduced the notion of Trusted MIDlets and Signed MIDlets

• Ensures consistent security mechanism defined by a domain policy.
• MIDlet suites can be cryptographically signed and verified for integrity.

• Trusted MIDlets
– Based on the J2SE concept of Protection Domains. 
– Each Protection Domain associates a MIDlet with set of permissions and 

interaction modes.

• Signed MIDlets
– Similar to signed applets, MIDlets are signed and trusted via digital 

signature and PKI support.
– Signer of the MIDlet is responsible for distributing and supporting the 

MIDlets.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Permissions and Interaction Mode
• A Trusted MIDlet contains “allowed” and “user” 

permissions.
– The “allowed” permissions define a set of actions allowed without user 

interaction.
– The “user” permissions define a set of permissions that require explicit user 

approval.
• The user permissions are defined to grant allow or deny permissions to specific 

functions via three types of Interaction Modes.
• Interaction modes are determined by a security policy.

• Interaction modes
– Blanket mode - The MIDlet is valid for every invocation until its permission 

is revoked by the user or deleted from the device.
– Session mode – The MIDlet is valid for very invocation until the session 

terminates.
– Oneshot mode: The MIDlet is valid for single invocation of a restricted 

method.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Example: MIDlet policy
domain: O="MIDlet Underwriters, Inc.", C=US
allow: javax.microedition.io.HttpConnection
oneshot(oneshot): javax.microedition.io.CommConnection
alias: client_connections
javax.microedition.io.SocketConnection,

javax.microedition.io.SecureConnection,
javax.microedition.io.HttpConnection,
javax.microedition.io.HttpsConnection

domain: O=Acme Wireless, OU=Software Assurance
allow: client_connections
allow: javax.microedition.io.ServerSocketConnection,

javax.microedition.io.UDPDatagramConnection
oneshot(oneshot): javax.microedition.io.CommConnection
domain: allnet
blanket(session): client_connections
oneshot: javax.microedition.io.CommConnection



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Signed MIDlet
• Signing a MIDlet suite is just a process of applying the 

digital signature to the JAR file.
– Process of adding signer’s public key certificates and digital signature to the 

JAR file.
– Adds new attributes to the JAD file – as Base64 encoded values of the 

certificare.
MIDlet-Certificate: <Base64 encoded value of certificate>
MIDlet-Jar-RSA-SHA1: <Base64 encoded value of signatures>.

• The J2ME wireless toolkit enables a signer to either sign a 
MIDlet suite (JADTool)
– The JADTool utility allows to use certificates and keystores from a J2SE 

keystore.
Example: java –jar  JADTool.jar –addcert or -addjarsig



Java Card Platform Security

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Card Technology Basics
• Java Card technology enables smart 

cards and other devices with limited 
memory to run Java applications.
– Designed based on the smartcard 

specifications – ISO 7816 defines the 
communication between application and a 
smartcard through “APDU – Application 
protocol Data Unit”.

– Helps adoption of Smartcard technology in 
Cellular phones, ATM/Credit cards, PDAs etc.

– Brings Java advantages to smartcards offering 
application portability, platform-independence 
and secure execution environment.

– Sun Microsystems provides a Java Card 
development toolkit for smartcard
application development.

The JavaCard
(Source: Sun Microsystems)



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Card Runtime Environment
• The Java Card Technology defines a Java runtime 

environment for smartcards.
– The Java Card runtime environment (JCRE) runs on top of smartcard 

hardware and its native smart card system.
– Java Card applications are implemented as “Java Card Applets” built using 

Java Card APIs.
– JCRE acts as an intermediary between the native smart card system and the 

Java card applet.
– Using JCRE, the host application sends a command APDU abd Java Card 

applet responds with a response APDU.
• The command APDU is transmitted to the JCRE which is sent to appropriate Java 

Card Applet for processing – which in turn send a response APDU to the JCRE.

• JCRE provides a secure environment and high-level API 
interface to support smartcard applications.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

JCRE Security
• The JCRE provides a secure execution environment with a 

virtual firewall between smartcard applications on the card .
– The Java Card API allows to develop secure smartcard applications – by 

enforcing security evaluation of the application by inheriting a subset of Java 
language features.

– The JCRE store the objects and data in memory. During a power loss or 
failure the platform make objects/data are store to its previous state.

– The JCRE also bring the notion of sandbox – implemented via applet firewall
mechanism called a context.

• Applets are forced to execute and its data access is allowed within a context only. 
• Applets residing in different context  can share objects using secure object-sharing 

mechanisms.
– JCRE embraces support for PKI and use of digital signatures.
– JCRE allows multi-application support for smartcards that allows multiple 

application coexist on a card without sacrificing security.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Card Applet Development
• The Java Card Applet development 

process contributes to Java Card 
security – The steps are: .

1. Development of Java Card applet – implementing 
and compiling any Java class.

2. Resulting Java Classes are tested using a Java 
Card simulator environment.

3. The simulator tested class files are converted to a 
Converted Applet (CAP) file using Java Card 
CAP converter tool. The resulting file is a Java 
Card Applet.

4. The Java Card Applet is further tested using an 
emulator tool – of the smartcard vendor.

5. The tested applet will be downloaded to the Java 
Card using smartcard vendor-provided tool.



Java Platform Security 
Key and Certificate Management Tools

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Security Management Tools

• J2SE provides a set of security management tools
– To administer security policies

• Support for reading and editing Java policy files
– PKI Management 

• Support for managing keys and digital certificates
– Signing JAR files

• Support for signing and verifying JAR files and its integrity

• In a J2SE bundle, the Java platform offers the following to 
support security and cryptographic related functions:
– Keystore
– Keytool
– Policytool
– Jarsigner.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Keystore

• The keystore is a protected database
– Adopts PKCS#12 (RSA Cryptographic standard for key storage)
– Stores keys and trusted certificate entries in a password protected file.

• Intended for verifying or proving an identity of a person or application
• Contains private key and chain of certificates to establish authentication with public 

keys.
– Each entry in the keystore is identified by an unique alias
– Keystore entries are stored in a .keystore file by default in <JRE>/lib/security 

directory (unless specified).
– All trusted certificates are store in a .cecerts file by default in 

<JRE>/lib/security directory (unless specified).

• With J2SE 5.0, Java offers support for using smartcards and 
cryptographic devices as keystores
– Via the support for PKCS#11 (RSA Cryptographic Token Interface)



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Policytool

• GUI tool for creating and 
viewing Java Security 
Policy configuration.
– Use ‘policytool’ command
– Allows to add Policy entries

• Specify codebase
• Add Principals
• Add Permissions
• Grant or Deny access



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Policytool Options

Adding a Policy Entry

Adding Permissions



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Jarsigner tool
• Java utility for digitally signing the Java archives (JAR)

– Uses the signer’s private key (from Java keystore) for applying digital 
signature

• After signing, the JAR file also include the copy of signer’s public key
– The JARsigner also allows to verify a signed JAR file
– Example (Signing a JAR file)

jarsigner
-keystore /home/ramesh/.keystore
-storepass mystorepasswd
-keypass mykeypasswd
-signedjar mysignedjar.jar

myunsignedjar.jar myPrivateKeyAlias

– Example (Verifying a signed JAR file)
jarsigner

-keystore /home/ramesh/.keystore
-verify  -certs mysignedjar.jar



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Java Keytool

• Keytool is a key and certificate management tool
– Intended to support authentication services and verifying data integrity.
– Supports administering public/private key pairs and associated certificates.
– Allows to create Java keystore (JKS) or Java Cryptographic Extension 

Keystore (JCEKS).
– Supports generation of Certificate signing requests (CSRs)
– Support self-signed certificates
– Supports storing keys and certificates in Java keystore 
– Maintenance of stored entries in a Java keystore.
– Supports X.509v3 Certificate standard with ASN.1 standard encoding and 

DER formats.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Creating a Java Keystore
• Keytool creates a keystore as a file named .keystore in the 

user’s home directory.
– Access to keystore is protected by a password
– By default, J2SE bundles installs a keystore in <JRE>/lib/security directory.
– Using keytool, keystores can be created to support applications or for 

supporting end-users.

• A keystore is created whenever we try to add entries to non-
existent keystore.
– A keystore name can be specified using the –keystore <keystore-name> 

option.
– The following options automatically create a keystore when it does not -

-genkey option is used to generate private/public key pairs
-import option is used to import a trusted certificate
-identitydb option is used to import data from legacy JDK 1.1 keystore.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Generating private/public key pairs
• Keytool allows creating public/private key pairs for testing 

Java applications with PKI.
– Each generated entry contains a private key and its associated certificate 

chain.
• The first certificate in the chain contains the public key corresponding to the provate

key.
• The public key is wrapped’ in as X.509 certificate (Issued as a Self-signed 

certificate).
– By default, the generated key pairs are added to the keystore.

• Example:
keytool –genkey –alias mykeyalias –keyalg RSA  -keypass keypasswd

-keystore mykeystore –storepass mystorepasswd.
• -genkey option is used to generate private/public key pairs
• -keyalg option represents the key alogorithm

– NOTE:  Self-signed certificates must be used for testing purposes only. For 
production usage, acquire certificates from a trusted CA -Verisign, Entrust, etc.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Exporting and Importing Certificates
• Exporting the public key certificate is required to support 

trusted interactions with the client application
– This is done by exporting the Public key certificate from the keystore.
– For example:

$ keytool -export -alias myalias -file mycertificate.cer -keystore mykeystore
Enter keystore password:  mystorepass
Certificate stored in file <mycertificate.cer>

• On the client-side, Import the trusted certificate in client 
keystore.
– The client makes use of  the Public key certificate by importing them.
– When a certificate is imported – the keytool utility verifies the certificate for its 

integrity using the list of trusted CA certificates stored in .cacerts file.
– For example:

$ keytool -import -alias myclientalias -file     \
mycertificate.cer -keypass clientkeypass -keystore clientstore -storepass clientpass



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Creating Certificate Signing Request
• Keytool allows to create Certificate Signing or Authentication

Request for obtaining certificates from a Certificate Authority 
(CA).
– This helps to sent CSRs and obtain CA signed certificates for production use.
– For example:

keytool -certReq -keystore mykeystore 
-file myCSR.csr -alias mycsralias



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Listing and Printing Keystore entries
• To list keystore entries and also look at the contents of an 

entry
$ keytool –list –keystore mykeystore –storepass mykeystorepasswd

• To print certificate information and display contents of a 
binary certificate

$ keytool -printcert -file  mycertificate.cer

• To delete a keystore, just use the operating system command 
for deleting (.keystore) files.



Securing Java Code
From

Decompilation

www.coresecuritypatterns.com



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Securing the Java Code – Why ?
• Reverse engineering is well-known security problem for 

Java applications.
– Java bytecode generated by a Java compiler contains much symbolic 

instruction, actual Java source and debugging information
– Using reverse-engineering mechanisms – it is possible to disassemble and 

decompile the executable Java bytecode into actual Java source code.

• The reverse-engineering risks and vulnerabilities include: 
– Modifying the original code and data
– Determine the flow of Java program execution
– Determine the algorithms in use
– Constructing a fraudulent application from the decompiled source.
– Stealing the intellectual property
– Allows a hacker to apply code-level security breaches 



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Reverse Engineering 
• Reverse engineering is a process of decompilation for 

extracting actual source code from bytecode.
– Disassembling the executable classes to an intermediary assembly code and 

then decompiling to higher-level abstraction of the bytecode.
– The noticeable difference of resulting source code is just absence of 

comments.
– Several commercial and freeware tools available for Java bytecode 

decompilation.
– For example, using freeware “JAD” (http://www.kpdus.com/jad.html)

jad -r  -d /home/ramesh/directory_for_sourcecode MyJava.class



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Preventing Decompilation 
• Decompilation of Java executable can be restricted by any of 

the following ways:
– Code Authentication

• Adopts evaluation and verification of executable code for trusted sources, runtime 
checks, predictable behavior and output.

– Encryption and Decryption
• Using encryption and decryption of executable code in transmission to ensure code 

is not accessible or tampered.
• Limits portability of the application but works well in server-side invocation 

scenarios.
– Code Obfuscation

• Transformation mechanism that changes the program and generate Java code with 
obscure references.

– Common methods include Structural/Layout transformation, Data transformation, String 
encryption, Watermarking.

• Most popularly adopted by Java developers.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Code Obfuscation 
• Java Code Obfuscation is a process of transforming the 

executable in a manner it affects Java bytecode decompilation 
– Decouples the relationship between the executable and the original source.
– Most common code obfuscation techniques are based on the following:

• Structural or Layout transformation, which transforms the lexical structure of the cod
by scrambling and renaming the identifiers of methods and variables.

• Data transformation, which affects the data structures represented in the program 
(example – changing the order of data in a list).

• Control transformation, which affects the flow control represented in the program 
(example – grouping of inline procedures, order of execution).

• Tamperproofing and Preventive transformation – which makes the decompiler to fai
and makes the generated code unusable.

• String Encryption encrypts all string literals with in the executable code.
• Waterproofing embeds a secret message in the executable that identifies the copy.

– Several Commercial and Freeware code obfuscators available (Intentionally 
avoided to mention here).

– Little performance overhead is common but no portability issues.



www.coresecuritypatterns.comwww.coresecuritypatterns.com

Further reading (Shameless Plug)

Core Security Patterns
Chris Steel, Ramesh Nagappan & Ray Lai
Prentice Hall, September 2005

&

http://java.sun.com



Thank You

Ramesh Nagappan CISSP
nramesh@post.harvard.edu

www.coresecuritypatterns.com


	Overall Presentation Goal
	Presentation Outline
	Basics about Java
	Core Java Technologies
	Java Security at the High-level
	Security in Java Virtual Machine
	Security in Java Language
	Security features in Java Language
	Security features in Java Language
	Java Platform Built-in Security
	JDK 1.1 Security Model
	Java 2 Platform Security Model
	J2SE Security Architecture Elements
	J2SE Protection Domain
	Permissions
	Setting Permissions in a policy
	Policy
	Example Policy file
	Java Security Manager
	Using SecurityManager Class
	Java AccessController
	Using AccessController Class
	Java Codebase
	Java CodeSource
	Java Bytecode Verifier
	Java ClassLoader
	Using URLClassLoader
	Java Applet Security
	Signed Applets
	Applet Signing Process
	Applet Signing Process
	Java Web Start
	Securing Java Web Start Applications
	JNLP Settings for JWS Security
	Sample JNLP Descriptor
	Java 2 Micro-edition (J2ME)
	J2ME Platform Architecture
	J2ME Configuration and Profiles
	CDC Security
	CLDC Security
	CLDC Security levels
	KVM Pre-verification Process
	J2ME Profiles
	MIDlet Security
	Permissions and Interaction Mode
	Example: MIDlet policy
	Signed MIDlet
	Java Card Technology Basics
	Java Card Runtime Environment
	JCRE Security
	Java Card Applet Development
	Java Security Management Tools
	Java Keystore
	Java Policytool
	Policytool Options
	Java Jarsigner tool
	Java Keytool
	Creating a Java Keystore
	Generating private/public key pairs
	Exporting and Importing Certificates
	Creating Certificate Signing Request
	Listing and Printing Keystore entries
	Securing the Java Code – Why ?
	Reverse Engineering
	Preventing Decompilation
	Code Obfuscation
	Further reading (Shameless Plug)

